Environmental and economic analysis of alternative powering options for coastal vessels with respect to future emission reduction targets

Nikola Vladimir, Maja Perčić, Ivana Jovanović, Marija Koričan

Prof. Nikola Vladimir

University of Zagreb,
Faculty of Mechanical Engineering and Naval Architecture,
Croatia
nikola.vladimir@fsb.hr
Contents

➢ INTRODUCTION

➢ STATE-OF-THE-ART

➢ METHODOLOGY

➢ ILLUSTRATIVE EXAMPLES

➢ CONCLUSION
Introduction

➢ Research background

Fossil fuel combustion causes exhaust gas that comprises of:
✓ nitrogen oxides (NOx)
✓ sulphur oxides (SOx)
✓ particulate matter (PM)
✓ carbon monoxide (CO)
✓ greenhouse gases (GHGs): carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and fluorinated gases in low concentration.
Introduction

➢ Research background

Global warming problem
✓ Caused by GHGs
✓ CO₂ is the main GHGs

Paris Agreement
The aim:
✓ To keep the global temperature rise well below 2°C above preindustrial levels and preferably below 1.5°C.
✓ To stabilise the temperature at the desired level, a sharp decrease of CO₂ emissions is required and possibly including negative CO₂ emissions after 2080.
Introduction

➢ Research background

Emission control in the shipping sector

The International Maritime Organization (IMO) established Emission Control Areas (ECAs), where emissions limitations are stricter than elsewhere

✓ **SO\textsubscript{X} emissions** are controlled by setting the limit on sulphur content in a fuel

<table>
<thead>
<tr>
<th>Date</th>
<th>Sulfur Limit in Fuel (% m/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SO\textsubscript{X} ECA</td>
</tr>
<tr>
<td>2000</td>
<td>1.5%</td>
</tr>
<tr>
<td>2010.07</td>
<td>1.0%</td>
</tr>
<tr>
<td>2012</td>
<td>0.1%</td>
</tr>
<tr>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
</tr>
</tbody>
</table>

✓ **NO\textsubscript{X} emissions** limits are set for diesel engines depending on an engine maximum speed

<table>
<thead>
<tr>
<th>Tier</th>
<th>Date</th>
<th>NO\textsubscript{x} Limit, g/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n < 130</td>
</tr>
<tr>
<td>Tier I</td>
<td>2000</td>
<td>17.0</td>
</tr>
<tr>
<td>Tier II</td>
<td>2011</td>
<td>14.4</td>
</tr>
<tr>
<td>Tier III</td>
<td>2016†</td>
<td>3.4</td>
</tr>
</tbody>
</table>

† In NO\textsubscript{x} Emission Control Areas (Tier II standards apply outside ECAs).

✓ **CO\textsubscript{2} emissions** are regulated by the Energy Efficiency Design Index
Research background

Emission reduction targets

✓ **GHG emissions**: reduction of annual GHGs emissions from international shipping by at least 50% by 2050, compared to 2008 level
✓ **CO₂ emissions**: reduction of average carbon intensity (CO₂ per ton-mile) by a minimum 40% by 2030, and 70% before 2050, compared to 2008 level.
Decarbonization measures in shipping sector

<table>
<thead>
<tr>
<th>DESIGN (New ships)</th>
<th>Saving of CO₂/tonne-mile</th>
<th>Combined</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept, speed and capability</td>
<td>2% to 50%*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hull and superstructure</td>
<td>2% to 20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power and propulsion systems</td>
<td>5% to 15%</td>
<td>10% to 50%*</td>
<td></td>
</tr>
<tr>
<td>Low-carbon fuels</td>
<td>5% to 15%*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renewable energy</td>
<td>1% to 10%</td>
<td></td>
<td>25% to 75%*</td>
</tr>
<tr>
<td>Exhaust gas CO₂ reduction</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPERATION (All ships)			
Fleet management, logistics & incentives	5% to 50%*		
Voyage optimization	1% to 10%	10% to 50%*	
Energy management	1% to 10%		

* CO₂ equivalent, based on the use of LNG.
† Reductions at this level would require reductions of operational speed.
State-of-the-art

Decarbonization measures

Alternative powering options

✓ Implementation of RESs on board ships

✓ Implementation of alternative cleaner fuels in ship power systems

✓ Implementation of hybrid ship power systems
State-of-the-art

- The electrification of ships

Fully electric
- Battery as the primary power source
- The absence of diesel fuel and emissions
- Suitable for short-sea shipping vessels
- Battery is charged with shore power

Plug-in Hybrid
- Battery powers the ship in specific operations
- Reduction of emissions and fuel consumption
- Suitable for long haul ferries and workboats
- Batteries are charged with shore power and excess energy generated from engine

Hybrid
- Battery absorbs load variations, so that engines only see the average system load
- Improvement of fuel efficiency, reduction of engine hours and low load operations
- Batteries are recharged using excess engine energy
The analysis is focused on the energy needs and environmental impact of the Croatian short-sea shipping fleet.

1. Fleet's schedule analysis
2. Average speed calculation
3. Energy needs analysis
4. Calculation of a ship average power and fuel consumption
5. Tailpipe emissions calculation
Methodology

➢ Environmental analysis

Life-Cycle Assessment (LCA)

Environmental assessment that considers emissions released through the life-cycle of a ship power system.

✓ WTP (Well-to-Pump) emissions
✓ PTW (Pump-to-Wake) emissions
✓ Manufacturing emissions
Methodology

➢ Economic analysis

Life-Cycle Cost Assessment (LCCA)

Economic analysis that considers total costs related to the power system through the lifetime of a ship

Total costs

Carbon tax

- Non-Taxation scenario
- Current Policies scenario
- Stated Policies scenario
- Sustainable Development scenario

CA (€/tCO2)

- 0
- 20
- 40
- 60
- 80
- 100
- 120

Year

- 2020
- 2025
- 2030
- 2035
- 2040

- Fuel cost
- Maintenance cost
- Carbon emission cost
Short-sea shipping sector - Case study of Croatia

The analysis of alternative powering options is performed on three different ship engaged in the Croatian short-sea shipping fleet.
Illustrative examples

➢ The electrification of ships

Fully electric ship

✓ Available and familiar battery technology
✓ High investment cost
✓ Limited range of a trip

Commercially available and investigated batteries for shipping purpose are:

✓ **Lead-acid battery**
✓ **Nickel-metal hydride battery**
✓ **Lithium-ion battery**

✓ Life-cycle emissions of the fully electric ships mostly depend on the electricity mix used
The electrification of ships

- **LCA**
 - CO2 emissions
 - NOx emissions
 - SOx emissions

- **LCCA**
 - Capital expenditure (CapEx)
 - Operating expenditure (OpEx)

Li-ion battery is the most cost-effective and the most ecological battery for marine applications!
Alternative powering options

Different ship power systems: implementation of RESs
✓ Fully electrification with battery and PV cells

Different alternative marine fuels: cleaner fuels with lower carbon content
✓ Electricity
✓ Methanol
✓ Natural gas (LNG, CNG)
✓ Dimethyl ether
✓ Hydrogen
✓ Biodiesel-diesel blend (B20)
Full electrification is the most environmentally friendly and cost-efficient solution for emission reduction!!
Conclusion

➢ Full electrification of ships represents the most effective option to reduce the shipping emissions.
➢ Currently, the most prominent battery for shipping purposes is the Li-ion battery.
➢ Further development of the battery technology (metal-air batteries) will result in the electrification of the long-distance ships.

Limitations

➢ The study considered application of single powered source per ship power system, but not their combinations simultaneously (leading to hybrid power system configurations).

Future / ongoing investigations

➢ Design of optimal power system for a pre-defined set of key performance indicators (KPIs) like: allowable emissions, required operative parameters (ship speed and capacity), economic indicators, etc., through multi-criterial optimization procedure (application of ModeFRONTIER software) – more details expected to be shown in an SI journal paper.
Thanks for Your Attention!!!

This research was supported by the Croatian Science Foundation under the project Green Modular Passenger Vessel for Mediterranean (GRiMM), (Project No. UIP-2017-05-1253). Ivana Jovanović and Maja Perčić, Ph.D. students, are supported through the “Young researchers’ career development project – training of doctoral students” of the Croatian Science Foundation.